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Abstract— SKkid-steering mobile robots suffer from slip effect
inevitably during their turnings, which results in imprecise
kinematics model and the degradation of navigation and control
performances. Hence, in this paper, we aim at developing an
online estimation method to acquire the robot’s instantaneous
centers of rotation (ICRs), a kind of slip parameters, by means
of data fusion technologies. The sensor system is composed
of two incremental encoders, a compass, a Global Positioning
System (GPS) unit, a camera and a data fusion unit. Based
on the data gathered from these sensors, the data fusion unit
is able to provide accurate global location, absolute heading
and robot’s ICRs in real time by applying the proposed terrain
adaptive innovation-based extended Kalman filter. With the aid
of terrain vision, the process noise covariance can be adjusted
according to the terrain type adaptively, and therefore, the
ICR estimation converges rapidly and smoothly. The real-world
experiment conducted on a four-wheel mobile robot is exhibited
to validate the effectiveness. Additionally, the results show that
the terrain adaptive odometry has higher accuracy than the
traditional ones.

I. INTRODUCTION

Skid-steering mobile robots are able to govern their head-
ings by adjusting the relative speed between the left and
right wheels rather than resorting to independent steering
mechanisms. Due to its robustness, simplicity and ability of
zero-radius turn, skid-steering mobile robots have become
the preferred all-terrain robots in agriculture, industry and
military. For the presence of large contacting patch between
wheels and terrains, the unpredicted slip is inevitable which
makes it difficult to build a precise kinematics model [1].
However, because most strategies concerning navigation,
motion control, obstacle avoidance and route planning are
designed based on the kinematics model of skid-steering
mobile robot, the robot’s performance can be significantly
improved by the online identification of terrain-related slip
parameters which are included in the kinematics model [2]—
[7]. Therefore, in this paper, we concentrate on designing a
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data fusion approach to acquire slip parameters in real time.

For the fact that the instantaneous centres of rotation
(ICRs) of the robot’s chassis, wheels or tracks are almost
constant while the mobile robot is moving on the same
terrain, the ICR kinematics model was proposed by intro-
ducing the ICRs into the traditional kinematics model of
skid-steering mobile robot [8]. The positions the ICRs is able
to reflect the robot’s lateral and longitude slips on different
terrains, so they can be read as the slip parameters, and
therefore, we are in the position to develop an ICR estimation
method. In [9], a empirical model combining ICRs and
robot’s kinematics state (i.e., the forward speed and radius
of the path curvature) is experimentally established, which
has proven to significantly improve the performance of dead
reckoning. The primary issue of such a off-line method is
that the robot-terrain mapping database should be established
in advance, so the ICR estimation can not proceed when
the mobile robot enters the area where the terrain is not
included in this database. Therefore, the current attentions
are switched to develop on-line ICR estimation methods.
Because the states of an ICR kinematics model is composed
of the robot’s pose and ICRs, we can estimate the ICRs by
fusing an odometry, heading sensor, and positioning system.
This work has been done by employing an extended Kalman
filter (EKF), and its effectiveness has been verified by a
number of experiments when the mobile robot traverses the
terrains in different motion patterns [10].

However, due to the uncertainties in the ICR kinematics
model and the linearization-induced error during the proce-
dure of EKF, the EKF-based ICR estimation method may
loss accuracy or even become unreliable. Furthermore, the
sudden terrain change and kinematics states’ variation may
result in the degradation of system performance as well. In
[11], a strong tracking filter (STF) and standard Kalman
filter are applied to estimate the robot’s kinematics states
and ICRs, respectively. By introducing a suboptimal fading
scaling factors, the filtering gain can be adjusted to guarantee
the orthogonality of innovation series. Hence, this method
has better state tracking ability and higher robustness against
model uncertainties and state jump.

To the best of our knowledge, the aforementioned work is
the state-of-the-art technologies concerning the ICR estima-
tion. The existing studies focus on the fusion approach, such
as the Kalman filter and its extensions, which suffer from
the following two common issues. First, the process noise
covariance of ICRs should be set as a relatively large con-
stant to enable the rapid convergence of ICR estimation, but
the ICR estimation results will oscillate seriously around the



Fig. 1: Top-view schematic of a skid-steering robot on a
planar floor. The two yellow meshed rectangles represent
robot wheels and the blue rectangle represents robot chassis.

truth values. On the contrary, to guarantee the smoothness,
the process noise covariance should be set as a relatively
small constant at the cost of slow convergence. Hence, the
setup of process noise covariance faces a inevitable trade-off
between the convergence rate and the smoothness of ICR
estimation. Second, the bad weather, canopy and viaduct
may block the satellite signals to some extent, resulting
in a lower localization accuracy of GPS. The ferrous and
electric materials may degrade the compass performance as
well. Hence, the time-varying statistical characteristics of
observations should be taken into consideration. In order to
solve the two issues, we propose a terrain adaptive innovation
based extended Kalman filter (terrain adaptive IEKF), to fuse
the data gathered from the incremental encoders, compass,
GPS unit and camera.

The rest of the paper is organized as follows. Section II
covers the establishment of the ICR kinematics model. Sec-
tion III presents the details of the proposed terrain adaptive
innovation based extended Kalman filter. Section IV exhibits
a real-world experiment and its result analysis. In Section V,
the paper is concluded.

II. ICR KINEMATICS MODEL

This chapter expatiates the kinematics model of skid-
steering robot by introducing the instantaneous centres of
rotation (ICRs) which are illustrated in Fig. 1. The body
coordinate system (BCS) is assumed to have it origin on
the geometric centre of robot chassis. The X-axis and Y-
axis are aligned with the longitudinal forward direction and
lateral rightward direction, respectively. The E-axis and N-
axis of world coordinate system (WCS) are eastward and
northward, respectively.

For a skid-steering robot, the following assumptions are
taken into consideration.

e All the wheels on the same side have the same rotational

speed.

e All wheels are in contact with the ground.
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e The moving plane is planar.
e All wheels are same in size and their radii are time-
invariant.

The kinematics states with respect to BCS and WCS can
be related by

é sinf  cosf® 0| [vg
’I'”'L = [cosf) —sinf O [vy], (1)
0 0 0 1] |w

where e and n denote the eastward and northward location
coordinate with respect to WCS, 6 denotes the robot heading
angle with respect to WCS, w denotes the rolling speed and
v, and v, denote the translational speeds parallel to the X-
axis and Y -axis,

Now we are in the position to find the relationship between
Vg, Uy, w and wheel rotational speeds by introducing ICRs.
Regarding the robot chassis, the left-side wheels and the
right-side wheels as three rigid bodies, their ICRs can be
described as three points with respect to BCS as shown in
Fig. 1. The three ICRs locates on the same line parallel to
the X -axis. Geometrically, the coordinates (x., y.), (¢, Ye),
(zr,y,) are functions of the rolling and translational speeds,
that is [8]

J;C:J;g:a/’r:—vfy, (2a)
w
Uy — U
Yo = :, (2b)
w
Vy — Up
Yr = ) (2¢)
w
Vg
Ye = —, (2d)
w

where v, and v, denote the rotational speeds of the left-side
and right-side wheels. The value of z. could be any real
number within (—oo, 4-00) theoretically and the infinities are
reached when w = 0. However, the values of y., zy and x,
are bounded because the numerators and denominators of
(2a), (2b) and (2c) are infinitesimals of the same order while
the robot is in linear motion.

Furthermore, the instantaneous rolling and translational
speeds with respect to BCS can be obtained by computing
the inverse function of (2a), (2b), (2¢) and (2d), that is

_ UrYe — VeYr (38.)
¢ Yo — Yr
v, = Zelve=vr) (3b)
Yo — Yr
w=r" (3c)
Yo — Yr

It can be known from (3a), (3b) and (3c) that the precise
kinematics model of skid-steering robot can be obtained if
x¢, x, and y. are known. All the slip effects caused by,
for example, the imbalance tire-ground contact forces and
asymmetric mass distributions, can be reflected by the three
parameters.
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III. TERRAIN ADAPTIVE IEKF

To facilitate the implementation of state estimation in
digital devices, we derive the discrete-time form of ICR
kinematics model as

Se41 = f(St, 004, Urt) + Wy, 4)

where s; = [et,nt,et,yg,t,ym,xc,t]/ denotes the state vec-
tor, and w; = [we’t,wn,t,we,t,wg’t,wr,t,wcyt]' denotes the
process noise vector which is assumed as Gaussian white
noises. Combining all the equations appeared in Section II,
the specific form of (4) can be obtained as shown in (5) after
using Eular method.

The previous work has shown that the ICR locations are
approximately constant while the robot is moving on a hard
and flat ground regardless of its manoeuvering patterns [8].
Hence, the ICR locations can be modelled as a Markov-
Gaussian stochastic process, that is, the ICR locations at the
current sampling point equals the sum of those at the last
sampling point and additive Gaussian white noises.

The observation equation follows the following form

2z = Hsy + vy, (N

! .

where z; = [2e.t, Zn.t, 29.1] denotes the observation vector,
! . .

vy = [Ve,,Un,i, Vg, ] denotes the observation noise vector
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which is assumed as Gaussian white noises, and H =
[I3x3,O3x3] denotes the observation matrix where Oszxs
and [543 denotes a 3 x 3 null matrix and identity matrix
respectively.

Now we are in the position to realize the ICR estimation
by fusing (4) and (7). There are two issues should be taken
into consideration: 1) The observation noise variance R may
varying with the robot motion, e. g., the performances of GPS
and compass degrade when the mobile robot moves into the
areas with a lot of buildings or magnetic interference. Hence,
the accuracy of EKF-based ICR estimation decreases; 2) If
the process noise variances of ICRs are set as three relatively
small constants, the results of ICR estimation will be smooth,
but the convergence is slow when terrain changes. On the
contrary, if the process noise variances of ICRs are set as
three relatively large constants, the ICR estimation results
will oscillate seriously around the truth values. Hence, the
setup of process noise variances faces a inevitable trade-off
between the convergence rate and smoothness of the ICR
estimation.

Therefore, we propose the terrain adaptive innovation
based extended Kalman filter (terrain adaptive IEKF) to
solve such a data fusion problem. The IEKF is an adaptive
filtering algorithm which introduces a innovation covariance



estimator into the calculation of the Kalman gain, thus to be
robust against varying noise statistical characteristics, model
uncertainties or linearization-induced error [12]. The details
of terrain adaptive IEKF are shown as follows.

1) Predicted Estimation: The predicted estimation s; is

®)

where f(-) has the form shown in (5). The error variance of
Spy1 is

Se41 = f(8¢, 004, Urt),

(€))

where F; and L; denote the Jacobian matrices of f(-), that
is,

Piy1 = BPF) + L,QL,,

of Fic+ Fs t:|
F,= — = ’ ’ 10
YT Osel,,_s, |:O3><3 I3xs]’ (10a)
0
Ly = 87]0 =T Isxe, (10b)
Wy St=38¢

where O,, x,, and I, x,, denotes n x n null matrix and identity
matrix respectively. The specific forms of Fx, and Fs,
are shown in (6a) and (6b), respectively. The process noise
variance () = diag(q1, g2, 3, 44, G5, ¢6) is a diagonal matrix.
The process noise variance of ICRs Q = diag(qu, g5, )
is set a8 Qumin = diag(¢min, Gmins ¢min) Where gmiy is a
relatively small positive number, say 0.01.

2) Terrain Visual Adjustment: The feature vector of a
terrain image at sampling point ¢ is denoted by c¢; =
[Crt, €ty Cots Cot)'s Where ¢, ¢g and ¢ denotes three D-
dimensional vectors which are related to three D-divided
color histograms with respect to the RGB colour space,
c¢ also denotes a D-dimensional vector representing the
image textures. After graying the original coloured image, we
use Local Binary Pattern (LBP) to acquire the LBP feature
diagram with D resolutions, thus obtaining c,. Hence, ¢; is
a 4D-dimensional vector.

Define a similarity function ¢; = ||¢; — ¢;—1|| where |||
denotes the ¢s-norm. If ¢, > o where o is a positive number,
then @ is set as Qmax = diag(¢max, dmaxs dmax) Where
(max 1S a relatively large positive number, say 100. After
5 sampling points, @ is restored t0 Quin.

3) Corrected Estimation: The innovation §; 41 is

Op1 = 241 — H541, (11)
and its covariance can be estimated by
1 t+1
— Y4
Ay = | > b
i=t—N+2
1
= A+ N (5t+152+1 - 5t—N+25£_N+2) ;o (12)

where N denotes the window size. Furthermore, the filtering
gain K is obtained,

Kt+1 - pt—O—lH/A;:l' (13)
Finally, the corrected estimation §;41 is
St+1 = St41 + Kip10i41, (14)
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Fig. 2: Illustrations of experiment scenarios. The yellow,
green and gray areas represent the terrains of soil, grass
and asphalt, respectively. The red disc, cross and dashed
curve represent the origin, destination and planned route,
respectively.

coupled with its error variance

Pty = (Isxe — K11 H)Pry. (15)

IV. EXPERIMENTAL VERIFICATION

In this section, a real-world experiment based on a four-
wheeled mobile robot, equipping with two incremental en-
coders, a GPS-compass integrated unit, and a downward-
looking camera, is presented to verify the effectiveness of
the proposed terrain adaptive IEKF. We mainly focus on
the convergence rate and smoothness of the ICR estimation.
Additionally, it is demonstrated that the accuracy of dead
reckoning could be improved with the knowledge of ICRs.

The experimental mobile robot is 400 millimeters in
length, 320 millimeters in width, and 250 millimeters in
height. The four wheels share the same diameter (130
millimeters) and width (60 millimeters). One of the left-side
wheels is equipped with a incremental encoder of 540 reso-
lutions, as well as the right-side wheels. The GPS-compass
integrated unit is able to output the robot’s pose (including
the position and orientation) at 1 Hz with accuracies of 2
meters and 1 degrees. The camera captures the terrain images
of 640 x 480 resolutions every ten seconds. As shown in
Fig. 2, during the experiment, the mobile robot traversed the
soil, grass and asphalt terrains, successively, and gathered
the data from the sensors at the rate of 1 Hz. After the data
gathering, these data are send to a computer (3.2 GHz with
8 GB RAM), and processed by using MATLab.

In Test 1 where quin, = 0.12, as shown in Fig. 3a, the
convergent tendency is obvious, but it takes too much time
to track the truths of ICRs. If the terrain changes frequently,
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Fig. 3: Results of ICR estimation test.

the ICR estimation may not track the truths. The results of
Test 2 where gmax = 202 are shown in Fig. 3b. The ICR
estimation is able to converge rapidly, but not in a smooth
manner. In Test 3, by introducing terrain vision, the ICR
estimation can track the truths rapidly when terrain changes,
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Fig. 5: Test results of dead reckoning based localization.
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Fig. 6: Test results of dead reckoning based heading deter-
mination.

as shown in Fig. 3c. After the estimation being stable, it dose
not oscillate around the truthes as that shown in Fig. 3b.
Fig. 4 shows the the outputs of similarity function. Observe
that the similarity function outputs a relatively large value



when terrain changes, thus it can be used as the indication
of terrain variation. In Fig. 5 and Fig. 6, GPS stands for
the outputs of GPS, Comp for the outputs of compass,
Odo for the traditional dead reckoning, IEKF1 for the ICR
dead reckoning where Q = Qmin, IEKF2 for the ICR dead
reckoning where Q = Qmax, and TA-IEKF for the ICR dead
reckoning where ICRs are estimated by using terrain adaptive
IEKF. Due to the presence of slippages, the accuracy of the
traditional dead reckoning is unacceptable. By applying the
proposed terrain adaptive IEKF, the ICRs can be estimated
with high accuracy, and therefore, the ICR dead reckoning
has the highest accuracy. Although it is observed that the
ICR dead reckoning diverge the outputs of GPS slightly at
the destination, the divergence can be retarded to a great
extent, which is of great significance to the localization in
GPS-denied areas.

V. CONCLUSIONS

In this paper, we proposed an on-line ICR estimation
method by fusing incremental encoders, a compass and GPS.
The data fusion unit is able to provide accurate global
location, absolute heading and robot’s ICRs in real time
by using the proposed terrain adaptive IEKF. As shown in
the real-world experiment conducted on a four-wheel mobile
robot, the ICR estimation converges rapidly, yet maintains
the smoothness. Additionally, with the aid of estimated
ICRs, an terrain adaptive odometry can adjust the parameters
of kinematics model automatically, and outperforms other
methods which cannot acquire ICRs accurately and timely.
In the future, we will consider other means to detect terrains,
such as a vibration-based method which is not susceptive to
illumination variation, to further improve the accuracy of ICR
estimation.
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